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The classical treatment and the quantization of composite relativistic systems is 
given a manifestly covariant formulation in presence of constraints. A particular 
formulation of Feynman's quantum mechanics is used to treat the scattering of 
composite relativistic systems. A covariant harmonic oscillator model is em- 
ployed to calculate vertices of interactions: the results are similar to the corre- 
sponding ones in the usual field theories, but the presence of some convergence 
factors gives hope that a theory with composite particles may be finite. 

1. I N T R O D U C T I O N  

This paper  calculates the vertex function for the scattering of composite 
particles, employing a model of covariant massive harmonic oscillator (Kim 
and Noz, 1973). This model is reviewed in Section 4, where the general 
result for the vertex calculation is presented too (for all the possible states of 
integer spin of interacting particles). 

In Sections 2 and 3 the classical and quantum treatment of relativistic 
discrete systems is revised starting from Dirac's method, i.e., in presence of 
constraints (Dirac, 1964). A particular formulation of Feynman's  quantum 
mechanics principle (Feynman and Hibbs, 1965) is proposed, in order to 
take into account constrained problems. The geometrical scattering for- 
malism (Mandelstam, 1973) is summarized, with the aim of presenting it for 
the vertex calculation. 

In Section 5 the vertex function is examined in two particular cases 
(scattering of three scalars and scattering of a spin-1 boson and a scalar into 
a scalar). The results are similar to those of usual field theories, but some 
extra factors look like convergence factors for large momenta.  

~Work supported, in part, by INFN and Fondazione A. Della Riccia, Florence, Italy. 
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2. CLASSICAL TREATMENT OF A DISCRETE RELATIVISTIC 
SYSTEM 

I will consider a relativistic system S described by N generalized 
coordinates. They will be called q~. �9 �9 qU and the evolution parameter will 
be called ~-. 

It is well known that the corresponding Lagrangian cannot depend 
explicitly on r and has to be homogeneous of degree one in the generalized 
velocities 

qi--  dq t 
-- -~r ' i : 1 . . - N  (1) 

in order to be invariant under reparametrization (Bolza, 1904). 
If q means the whole set of velocities and q means the whole set of 

coordinates, calling L(O, q) the Lagrangian we are talking about, the usual 
definition of canonical momenta is 

p,(,~, q) = 0L(0' q) (2) 

from which follows the usual definition of the Hamiltonian: 

H(q, q) = - p ,  gli-L (3) 

where the summation convention of repeated up and down indices is used. 
Because of the homogeneity of L, H is identically the zero function: 

H(r q) = 0 (4) 

But at the same time the same homogeneity property implies 

de t [~2L(q 'q ) ]  = 0 0 q , ~ 0 k  (5) 

and this condition clearly forbids a regular Lagrangian or Hamiltonian 
treatment of the problem, since the Lagrangian is of the kind called singular 
(see, for the argument, Sudarshan and Mukunda, 1974, and Dirac, 1964). 

A direct Hamiltonian approach for singular problems is Dirac's method 
(Dirac, 1964), which I will shortly describe, in a revised version. 

The Lagrangian L(0, q) can be used for all the values of q, q for which 
it is mathematically regular and suitable to the problem, say (q, q)EQ c 
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R 2N. But in different subsets of Q the rank of the Hessian matrix 

(Wik)=(02L(il'q) )OqiOqk (6) 

may be different, and since separate treatments are to be done for different 
ranks (which correspond to different physical situations), we now consider 
the total 2N-dimensional volume QR C Q, for which 

rank( W,k ) -- R < N (7) 

We cannot express all the velocities q's as functions of the canonical 
variables p's, q's and, on the contrary, we find ( N - R )  relations, called 
primary constraints, of the kind 

~m(p,q)  = 0, m = l . . . N - R  ( 8 )  

directly deducible from the definitions of the p's and not involving any of 
the q's (Shanmugadhasan, 1973)�9 Then, according to the theory of con- 
strained variational calculus, using that first set of constraints the usual 
Hamiltonian principle is to be replaced by the following one (remember 
H = 0): 

. 

- x o (9) 

applied in the re~ion described by all the restrictive relations already 
introduced, where X's are arbitrary functions of the parameter r. We get the 
set of equations (forget, at first reading, the - underlining) 

�9 =o,,OOm(P,q) pi th  Oq ~ 

gli~ -- ~ m o(]m( p' q ) (10) 
Op~ 

completed, as forewarned, by the restrictions 

(~.,=---.0, (gl, q)~QR (11) 

the last one of which, just using (10), can be expressed as follows: 

( p , q , ~ ' ) ~ f f R C R  2N+(N-R) ( m = l . . . N - R )  (12) 
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To properly stress the presence of restrictions we have used relation 
symbols underlined with a ~ .  Each underlined symbol acquires a "weak 
value," which means it is to be considered vahd only in the presence of all 
the restrictive conditions already defined (Sudarshan and Mukunda, 1974). 

Now, since the only requirement for correct dynamics is having restric- 
tions which are constants of the motion (Dirac, 1964), we have to find an 
additional set of conditions so that the complete set of restrictions can be 
self-consistent in maintaining itself during the flow of the " t ime" ~'; 
principle (9) is updated for each new constraint introduced, i.e., the Hamil- 
tonian equations of motion are, step by step, updated too. 

Considering therefore the evolution of constraint conditions (having 
called "constraint" a restriction written in the form of an equality), we can 
write [see equations (10)] 

On m d a m - -  ~ ~m ~t i ..~_ .~p i JO i 
d'r Oqi 

.~ ~m' ~rn  O['~m' + ~m' O~'~m O~"~m' (13) 
Oqi Op i Op i Oqi 

and so we have to require 

*m' o 
?~ (~,,,, f~,,,} ~ 0 (14) 

In the region (11), which we are considering, the rank of the matrix 

(15) 

will take its minimum B (0 ~< B ~< N - R) in a certain subregion of the type 

(],,~0, ( P , q , ~ ' ) ~ R ,  (P,q)~FB CR2N (16) 

being major in all other subregions. 
The region included in F B can be described by a maximum number of 

constraint relations (secondary constraints) 

] (~ .0 ,  a = l  . . - A  B (17) 

and by a possible supplementary condition not allowed to be expressed in 
constraint form [say, (p,  q )~F~  C FB]. That means we can write, to express 
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the region (16), 

~,,,~.0, ~(,,~. 0, ( p ,  q, ~,m) ~ R .  B C ~ R 

m = l  . . . N - R ,  a = l  - . -A~  (18) 

having formally combined the supplementary condition (p ,  q)~F~ with 
restriction (12), updating it. 

The area (18) represents an updated set of restrictions: in other words, 
during the process of updating the set of restrictions, we are leaving the ~'s 
as undetermined as possible. (It is intended that the residual restriction not 
expressed in the form of constraint remains so little restrictive on ~'s that 
we can forget its conditioning on them.) 

At this point, we introduce (via some new ~'s) the new constraints in 
the principle (9) and derive from it the new Hamiltonian equations: 

p ~ h  O~zh(P'q) 
Oq* 

( h = l  . . . N - R + A B )  

Vh = (~h i f h = l  " " N- -  R 

l~h=5(h_tN_n) i f h = N - R + l  . . . N - R + A  s (19) 

The new equations for the motion constancy of constraints are 

~,h'{ I,Th, l)'h,} ~ 0 , h , h ' = I . . . N - R + A  B (20) 

and again the possible ~'s that guarantee them depend on the rank of the 
matrix ( fzhh, ) = ( (f"h, f"h, } ). 

If that rank is constant in the area 

Vh~O, ( p , q , ~ h ) ~ 3 n . B ,  h = l  " " N - - R + A  B (18') 

[where the last condition corresponds to the last one in (18), but with 
(gt, q ) ~ Q n  developed via the new Hamiltonian equations (19)], we have no 
reason to divide the region again. [In the same way if the rank of matrix (15) 
was constant in the region (11) we would not introduce any secondary 
constraints.] But if that rank is variable it will take its minimum B' 
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( B ~< B' ~< N - R + A s) in a region 

~ , , ~ 0 ,  ~Q~O, a = l  . . -As ,>~A s 

( p , q , ~ h ) ~ R . s . S ,  CY3R. B ( h = l "  " N - - R + A B )  (21) 

The method is iterated until we find a region 

~.,~-.0, 2Q~0,  a = l  - - 'As , . ,  

( P , q , ~ h ) ~ d R , S , S  .... S'"' ( h = l "  " N - R + A s , , ~  ) (22) 

in which it is impossible, following the described procedure, to introduce 
new restrictions. This region, also written as follows: 

("h ~0 ,  (P,q, f~h)~efS.S.S .... S'"' 

l~h = ~h if h---- 1 " "  N- -  R 

l'~h = ~(h-(N-.) if h = N -  R + 1 " "  N -  R + As,., (23) 

represents the complete set of restrictions to the Hamiltonian equations 
which now are 

p,~. ~,h aVh(p, q) 
Oq~ 

Op i ( h = l - - . N - R + A B , . ,  ) (24) 

having started from a rank R of the Hessian matrix (6) and assuming, as we 
will make precise, that the residual restriction not expressed in the form of a 
constraint does not need any generation of further conditions. 

The corresponding equations for constancy of constraints are 

~,h'(Vh,f"h.}=-----O, h , h ' = I " ' N - R + A s , . ,  (25) 

and it is clear they condition only B (") of the ( N - R  + As,.~ ) degrees of 
freedom of the }~ set. (As usual the residual condition is considered as not 
affecting the determination of }r 

A rearrangement of constraints can be done in order to eliminate B (") 
of the ~'s determining them as zero functions (Sudarshan and Mukunda, 
1974). The treatment we have developed maintains its validity if we change 
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the 17 functions into the new ones 

Vh( P, q) = Shh'( p,  q)l~h.( p, q) (26) 

where (Sh h') is a ( N -  R + A B , . , ) •  R + As,., ) weakly nonsingular 
matrix. 

We will, from now on, use the new symbols V h to mean we have 
rendered maximum the number  of constraints which are weakly represented 
by first-class functions. 2 In this way, rewriting the (25) system as follows: 

Xh'( V h , Vh. } =---.0 (27) 

a maximum number  of equations and terms of equations disappears and the 
remaining ones 

~n'2{ Vh2, Vh, } ~O (28) 

which contain B(")A's and have (Sudarshan and Mukunda, 1974) 

rank(Vh,_h,~)~B'") [ i .e . ,det(Vhw~)~O ] (29) 

give clearly 

~h2 __ 0 (30) 

At this point the Hamiltonian equations are 

p ~ h ,  OVh, OVh, 
0'~ - x  h, (31) 

~qi ' ~Pi 

where the h I index runs through (N  - R + A s , . , -  B ~')) values and the ~h, 's 
remain undetermined. The presence of undetermined quantities means the 
presence of invariances in the theory: the choice of particular gauges on 
them can give determination to the ~h, 'S. (For instance an invariance that is 
always present is the reparameterization one; by itself it gives rise to one 
undetermined ~ whose value can be chosen fixing the physical meaning of 
~-.) 

2We remember the meaning of this: if Vh( p, q)~O (h = I �9 .. ) is a set of equations, a function 
V% of V's is weakly "first class" if {Vho, Vh}ZO Vh. 
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The residual condition ( p, q, ?~h) ~oyR. B, B .... B(") that we left in this way, 
we assume is now rewritten as follows: 

( p, q, Xh' ) ~UdR.e.s .... n,., CR  M 

where 

(32) 

M =  2 N + ( N -  R ) +  ABc.~-- B (") 

and we also assume it is a constant of the motion if we choose properly a X h' 
set for the Xh, 's. 

At last we define 

Hr(  p, q, Xh' ) = Xh'Vh,( p, q ) (33) 

and we can write the complete restricted Hamiltonian problem in the 
following form: 

Pi ~ (Pi, Hr} ,  gli~ {qi, Hr } 

Vh =~0, (P ,q ,  X h ' ) ~ R , s . s  .... B("' (34) 

or, in general, for any function of the motion A(p,  q) we have 

fl( p, q)=~ (A,  Hr} (35) 

After having established a Poisson formalism 3 via the " total  Hamilto- 
nian" H r, we now define a " total  Lagrangian" L r generated by H r. 

We consider N regular functions g~(0, q, Xht) and define 

~Ci({t,q,f~h,)= OHr(g(gl'q'Xh') 'q 'xh ' )  
~g, (36) 

6-fJv=((cl, q, Xh ' ) : (g ,q ,  Xh')E~R,B, B .... B(.,} (37) 

If it is possible to satisfy 

det(  0g__L ) 0q k 4:0 at least in ~ (38) 

3A Dirac formalism can be originated, which modifies Poisson brackets into "Dirac brackets": 
see Dirac (1964) or Sudarshan and Mukunda (1974). Note, anyway, that the Dirac bracket 
formalism does not keep the manifest covariance. 
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~ ' (  (t.q, Xh , ) - - r  ' 

then the function 

at least in 6~ (39) 

Lr ( f l ,  q, Xh') = --g,(gl,  q, Xh')gf l - -Hr(g(gl ,  q , ~ h ' ) , q , X  h') (40) 

is mathematically regular and nonsingular at least in @; besides, considered 
as an usual Lagrangian in ~ (X h' taken as parameters), it gives the 
Hamiltonian problem 

. OH(: ,  q, X h' ) r O/-)(P, q, Xh' ) 
Pi = Oqi ' Dffi 

(P,  q, Xh') ~ ~R,s,B .... B'~ (41) 

where we have called p 's  and H the canonical momenta and the usual 
Hamiltonian derived from L r and where it is easy to see 

171 -- H r (42) 

(and so also p = p). 
That means L r is the Lagrangian which generates, with usual nonsingu- 

lar treatment, the Hamiltonian problem without constraints. I f  6~max36-~ is 
the maximum set in which L r is definable with the above procedure, 
starting from L r on ~ max we can find the Hamiltonian problem deprived of 
a maximum part of the residual restriction too. 

In the following I will use L r for a particular purpose, while quantizing 
what has been established; the quantization will be done starting from 
Poisson brackets. 4 

3. QUANTIZATION AND SCA'ITERING 

For the following we will assume that the residual condition in (34) can 
be written as follows: 

Gr(p ,q ,  Xh')prO, r = l - - - D  (43) 

where each Or is a relation symbol belonging to the set > ,  t>, < ,  ~<, ~ .  
Considering now the usual quantization procedure {, }--, - i [ , ] ,  in the 

Schrrdinger picture the canonical variables p 's  and q's become linear 

4 For a Dirac bracket quamization see Dirac (1964). 
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Hermitian operators p's,  ~'s not depending on z and characterized by a 
commutator [/~j, ~k] = isjk (we use h = c -- 1). 

The problem (34), if we leave apart, for a while, the non-first-class 
constraint functions, could be quantized as follows (Dirac, 1964): 

. d  
Ir  = ,qT( )I 

0, h ,= l "  " N - R + A B , . , - B  (~) 

pro, r = l  . - .  O (44)  

where 12h, is the linear Hermitian operator (not depending on ~') correspond- 
ing to a constraint function Vh,; Hr(T ) and G,(~-) are the linear Hermitian 
operators corresponding to H r and Gr, and, in case, depending on ~" only 
through the 2,h'(~-)'S (which remain classical multipliers). Notice that the 
first-class constraint functions V h's meet (Dirac, 1964) 

{Vh,(p,q) ,Vh;(p,q)  ) =ah~'hr (45) 

and so we can also have 5 

[ Ph,, I2h~] = ifhTh,hil2h 7 (46) 

Of course that is the reason the quantum problem (44) looks consistent, 
remembering that H r too is made up of first-class constraint functions. 
Actually this last circumstance means that the Schr6dinger equation in (44), 
in consequence of the "observations" of 12h, operators, is simply reduced to 
this: 

idl~(~-)> =0 (47) 

At this point, for a further analysis including the non-first-class con- 
straint functions [whose number B t") is even, as stated by det(Vh2h~)~ 0], we 
need the whole set of constraints to be in a "standard" form, which we will 
make precise. Direct "observation" of non-first-class constraints is forbid- 
den, but, in the standard form, there is a way of "combining" them properly 
in a complex function formalism. 

5We are assuming there are no problems in the correspondence rule {,}--- , - i[ , ] ;  for a 
discussion of this, see, for instance, Von Neumann (1955) and Rosen (1969). 
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It is generally possible to build up the whole set of constraints in such a 
way that it satisfies 6 (45) and, calling Qi2, Pg2:i2 = 1 . . .  H =  B(")/2 the 
non-first-class constraint functions: 

(Qi2, Qi,2} = (Pi2, Pi~} --o, 

{Qi2, Pi;}=o if i2~:i~ 

{Qi2, Pi2}>,o, i 2 = 1 - . . H  

" =1 - - - H  i2, l 2 

(48) 

and furthermore 

{ vh,, r/~ } = B~,;,y~ + rZ~, T,~ (48') 

where each T~2 is a complex linear combination of the following kind: 

Ti2= O,2+iPi2, (49) 

Of course T~'s, which are the only complex classical functions introduced 
until now, have the property 

Ti2=Oc*Q, = Pi2=O 

and for the corresponding linear operators there should be no problem of 
observationS: 

T/zl~('r)} = 0, i 2 = 1 - . - H  (50) 

So, for the ~2 are annihilation-like operators, it looks reasonable [consider- 
ing the (50) as auxiliary conditions] to assume that any physical state is 
determined by these equations, including "observations" of both kinds of 
constraints: 

;'h,lr = 0, ~ 2 1 r  
. d  

(r l~rr I r  = 0 

The Schr/Sdinger equation 

i d l ~ ( ~ ) >  = ~ r ( ~ ) l ~ ( ~ ) >  

(51) 

(52) 

6What follows is a consequence of Theorem VII, 24 in Schouten and Kulk (1949). 
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does not completely lose its meaning in view of (47); in fact we can consider 
that any ket [~(z)) solution of (52) is a generic representative state of our 
system, generally not physical but virtual, suitable, in this case, as a 
propagator line of a Feynman graph. So it is interesting to look at the 
evolution of kets satisfying simply (52) (representative kets). 

If [~(%)) is a representative ket at a "time" *0 it is well known that we 
can get a unitary operator 0,(%) which gives the evolution of [~(~0)): 

= 0 , ( ,0)  I,I,(,0)) (53) 

It is well known too that for ordinary nonsingular problems there exists the 
Feynman expression (Feynman and Hibbs, 1965) 

expfi f'dtL(O(t),q(t))]| (q"lO'('r~ t "o 
q(r) = q" 

(54) 

where L is the classical Lagrangian of the problem and [q) is a basis of 
eigenkets of 0 not depending on ~" and generating the Hilbertian space of 
representative kets. 

The formula (54) can be modified for singular problems. If Lr(,~, q, X h') 
is the total Lagrangian and the ~m~ set we defined in the last part of 
Section 2 is the whole space R M [see formula (32) for evidence], it is quite 
obvious that the SchrOdinger equation (52) has the same relation with L r 
that exists between the Lagrangian L of a classical nonsingular problem and 
the corresponding Schrrdinger equation. 

That means we can write 

(q"l 0,(~0)I q')= ~ ,.of~(*0)=q'eXp[if*~dtLr( dt(t ), q(t ), Xh,(t ))J] 63 (q(t))  

q ( r )  = q" 

(55) 

which is the Feynman principle adapted for singular problems. 
Of course it is possible to describe a path integral geometrical scatter- 

ing formulation too (Mandelstam, 1973). Consider the graph in Figure 1 
with the following definitions: 

(i) I~t,)), [~2)), [~O))' [~(,)) and the line [0l are "free" states, in 
^ 

the meaning that their relative total Hamiltonians Hr(I)(~-(o), 
Iglr~2)(T(z~),t;Iro~(r162 do not contain any- 
thing concerning the interaction of Figure 1. 
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Ir 
14,>> / P' 

[0] 

Fig. 1. The simplest scattering graph. 

(ii) I*(,)), 1"(2)), I*o)>, 1"(4)) are fixed states of physical meaning 
(and so independent of their " t ime" parameters ~-(,), ~'(2), r(3), ~'(4))- 

(iii) [0] is a line of a virtual state. 
(iv) ~-', ~-" are the conventional values of r(0 ) at the "scattering points" 

p' ,  p,,. 

(v) [P(o)): P(o) E ~ is a set of kets (functions of an index P(o)) not 
depending on ~(o) and able to span the whole Hilbert space to 
which a state of [0] belongs. 

Assuming, for convenience, that P(0) is a nondiscrete index, the geomet- 
ric formulation of scattering is simply 

((output  linput)[ scattering 
of Fig. I 

I ^ , " / ,o"  i U~o)~.,,(,r )lP[o>) = f (.o)*(4)1 P(o)) interaction \ (0) 1 
at P'" 

x (p/0>l*(,>'i>(~>)i..,<r:r d,~ ,r') 
at P" 

(56) 

Introducing the wave functions *(i) (in L(o coordinates q(,.)'s: i = 1,2), and 
Fp,o=(q(o)lP(o) ) (in L(o ) coordinates q(o)'S), the vertices in (56) can be 
expressed using this (Mandelstam, 1973): 

I </9(0) I *(1)*(2)>] interaction = c f  [ Fp~o, ( q(o, ) * (  1)( q(m, )r q(2, )] d~ 
q(o) s p( at P 
q(t)=gp(~) 
q(2) = h p(~) (57) 
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where C is a coupling constant and the connections 

q(o) = fe(~), q<,) = ge(~), 

q(o), f~'~ R L~o,, qtl), gl 'E R L~,~ 

q(2), he E R Lc2), *~ E RLcp~ 

q(2)= hp(~) 

(58) 

are considered able to define the "scattering point" P, whose dimensionality 
has been called L(p) .  Of course the propagator 

Iv ^ ! ! (oi0) I v(0),,, ( �9 )1 p(o)> (59) 

can be generally calculated directly, remembering the expression 

In other cases, since we obviously have 

(60) 

- , f ' , 
" = dq(o) dq(o)(Pio)I q(o)) (qc0) I Uc0w ' (z')I qco)) (q(0) l P~'o)) (pio) I U<0)~"( r ) I p( 'o)) . . . . . . . . .  ^ 

(61) 

we may use principle (55). 
In conclusion of this section, we note that a propagator line [0] of a 

scattering graph should not be necessarily thought of as a generic repre- 
sentative state of the propagating system (i.e., a state simply satisfying the 
Schrt~dinger equation). It is quite clear that any quantum condition compat- 
ible with the Schrrdinger equation may be used to restrict the set of 
representative states to a subset of virtual states suitable to the problem, i.e., 
states which correspond to the meaning of the propagation we are consider- 
ing; the path integral quantum mechanics formulation here outlined is not 
affected by this. 

4. INTERACTION VERTEX FOR PARTICLES DESCRIBED BY 
A COVARIANT MASSIVE HARMONIC OSCILLATOR 

M O D E L  

In this section I use a covariant massive harmonic oscillator model to 
compute the interaction vertex for particles described in that way. I first 
recapitulate the model (Kim and Noz, 1973; Karr, 1976; Kalb and 
Van Alstine, 1976). 
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In a pseudo-Euclidean frame of reference] calling ff~ and 3~ 2 the 
four-dimensional coordinates of the two oscillating points and defining the 
new variables 

x= �89  + g 2 ) ,  z = X z - g  , (62) 

the relativistic Lagrangian can be expressed as 

("elastic constant") (63) a > 0 ,  K > 0  

subject to the two conditions 

,,~ 3L OL E R + g 

( 1 --  Z~-~ ) [(.~Z)2 --  Z2(.~2 q- 22)]  E N + (64)  

The second one of (64) is the regularity condition for L; the first one is 
easily recognized to be the mass condition, as we define 

3L 3L 
Pa = - "0:ta, q~ - 32 ~ (65) 

by which it becomes 

p2~>0 (66) 

Calculating the Hessian matrix of L, we find that the rank is every- 
where 6 in the (64) region. The two primary constraints can be expressed as 

p2+q2+KZzZ-m~=~O (m~=KZa) 

pz=~O (67) 

and they generate only the secondary constraint 

pq=~O (68) 

7The metric tensor, called g"~, will be diag(+ 1, - 1, - 1, - I). Greek indices run through the 
values 0, 1,2, 3 unless otherwise indicated. 
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The set of constraints is now complete, and already maximizes the 
number of first-class constraint functions: the only first-class constraint 
function is f~ = p2 + q2 + K2z2 _ m 2. 

The Hamiltonian equations are 

0 0 
P~=~ ~x~ HT, (1,, ~ -~gz~ Hr 

0 0 
~=~ - - - H r ,  ~"=~ - - -  (69) Op~ 3 q~ Hr 

HT=?~(p:+q2 + K2z2-rn~)  

or, in explicit form, 

p~=~O, O.=~2XK2g~oz ~ 

s -2Xg~/Sp/s, ~ - 2 X g ~ p ~  (70) 

and, using them, the second of (64) is reduced to 

•2(p2 + q 2 ) ~  0 (71) 

Noting that (p  2 + q 2) ~ 0 is implicit in pz =--. O, p2 > 0, p2 + q 2 + K 2 Z  2 __  m 
~-0, the whole set of restrictions is rewritten as follows: 

p2 + q2 + K2z 2 _ rn02~,O, pz=O 

pq~O, p2~>0, ?~ve0 (72) 

p2 ~, 0 is a constant of the motion, and for meeting the condition ?, v a 0 we 
simply need to use a X(I-): X(r) 4:0 w-. 

The calculation of the total Lagrangian gives 

L r = (1/4X)(.~ 2 + z'2 -4K2XZz 2 +4XZm 2) (73) 

and this function is everywhere valid and regular, suitable for use in 
Feynman's propagator calculation. 

Concerning quantization, with the usual definitions 

(1),: 
fl~'= 2~'- ig ~'~ ~ ?t~ (74) 
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the problem including "observation" of both kinds of constraints is simply 

i_~ d a~l~,(~)> =0, (p2 + r + K2e~_  m~) l~(~)>  = 0 

b~l~(r)> =0, <~(~)l/l~'(r)> >0 (75) 

while the Schrtdinger equation regulating generic representative states is 

(76) i d q2 K2~2 ~ l ~ ( r ) >  = X(r)(p2 + + - m ~ ) I ~ ( r ) >  = 0  

If we also observe the momentum p 

Al~(~)> = &l~(~)> (77) 

the equations in (75) can be solved in Kim and Noz's way (Kim and Noz, 
1973). Introducing the usual operators of occupation: 

]Q0 : ~0t~0, ]Qk=~lk~kt ' k=1 ,2 ,3  (78) 

and passing from our frame of reference (say s to a frame of reference ~cm 
in which pk = 0 (k = 1,2,3), the equations (75), (77) become simpler: 

i~-~T [~cm(r)> = 0  

(p0)cm ]dPcm(r)) ---- (p0)Cm [~cm(r)) (79) 

( ffk)cm ] (I)cm(T)> ---- 0, k=1 ,2 ,3  

j = l  

(po)~m(a~ I~bcm(r)> -- 0 ~(]Q~ [ (I)crn(T)> = 0 

and the normalized wave function can be solved in the following form: 

(~Cm( XCm, Zcm ) -- 4~r3(2,,n,!n,,!n,,,! ) , / i e x p [ -  "l( Po ) cm ( x K o )cm] 

• exp[ -  �89 KS.u ( z" )cm( ZV )cm] n,,,( K 1/2(- Z 1 )cm) 

X n n , , ( g l / 2 ( - z 2 ) C m ) n n , , , ( g l / 2 ( - z 3 )  cm) (80) 
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in which 
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(p2)Cm = rr/2 + 2 K  +2Kn  

where n = (n'  + n" + n"'), and n', n", n '"  are the eigenvalues corresponding 
to the observations 

( 1V'] )cm ] (I)cm) = n(J)ldPcm), 

t/t = n(I), n "  = n(2), 

j = 1 , 2 , 3  

n ' " =  n O) (81) 

Deriving the wave function in Z [with a scalar transformation from 
(80)] and using a symbol Cp. to point out the quantum numbers p and 

- -  t t t  t v v  n = ( n , n  ,n  ) ,wehave  

where 

%.(x,z)= K 
4.r3(2.n,!n,,,n,,,,) , /2 e x p ( - i p x )  

• (82) 

p 2 = b 2 + 2 K n  ( b 2 = m ~ + 2 K )  

and where the ~(p)  coefficients are defined by the Lorentz transformation 

(xt~) cm = X"u( p ) x  v (83) 

If we now define the classical functions 

Sk =�89 ( i , j , k = l , 2 , 3 )  

3 

S 2 -  ~.. (Sk) 2 (84) 
k = l  

where ek~ j is the total antisymmetric three-dimensional symbol and where 

S ~'~ = - g~'z"q,, + g"az~'q,, (85) 
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then the Sk's and S 2 a r e  classically constants of the motion. The correspond- 
ing quantum operators, which can be expressed using the forms 

i 
Sk = ~ ekij(aJai* -- fi'aJ* ) (86) 

and satisfy ({3 is the null operator) 

IS,, S,] = ieokSk 

[ < , g ' ]  = 0  (87) 

can be considered operators of integer spin, and the two observations 

(g2)cmlr = S(S + 1) I~cm), s E N + { O }  

(S3)Cml~cm)=S31~cm), - - s ~ s 3 ~ s ,  s 3 C Z + ( O  ) (88) 

are possible and compatible with equations (75) and (77), to replace (81). 
This means, using Kim and Noz's states, that linear combinations of them 
can provide states of definite spin. For instance, 

I%.,) .,-:o : I%,,,).~o.o,o~ 
s 3 = 0  

= !  ~1%~)~-=~0, I CI~p.,-s3) s =, ~ I ~}pn)n ~<t.o,o) + ,,o) 
S 3 = I  

I%.,.,,).~=, = I%.) .~o .o , , ,  
s 3 = 0  

l ~ (89) IO,,s,,).,=l = I~.,,.)._=(,.o.o>- i I*,,u)~=(o.,.o) 
,,=_, 7 

with obvious meaning of the symbols employed. 
That concludes our resum6 of the model. Next we use principle (55) for 

the Feynman propagator calculation. 
Since L r is a quadratic function [see formula (73)] the expression of the 

Feynman propagator 

z. ] (x"z"lO~.(r')lx'z') = exp i , Lr(2, ~, x, z, X) dr 
( r ' )  = x ' ,  z ( r ' )  = z '  

x(  r" )  = x ",  z( r " )  = z "  

• |  (90) 
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can be simply calculated in the following way (Feynman and Hibbs, 1965): 

( "" ) x(T'):x'.z(,')=:' (x"z"lO.~,,('r')lx'z'>= f (T ' , r " )ex  p if Lrd'r (91) 
--7"' - x(r,,)=x,, z(r,,)=z,, 

where the integral has to be performed placing in L r the solution (x(~'), z(~-)) 
of classical problem (70) solved with the conditions indicated in the above 
formula, and where f(r ' ,  ~'") is a coefficient so that the propagator satisfies 

f <x"z"lO~,,(~')lxz><x'z'lO~,,(~')lxz>*dxdz = ~(x"- x') ~(z"- z') 

lim (x"z"lU<,('r')Ix'f> = 6 ( x " -  x ' ) 6 ( z " -  z') (92) 
, ! . , , ~  7 t 

f <x,,z,,lO,,(%)lxz><xzlO~o(~')lx'z' > dxdz : (x"z"{O~..('r')lx'z'> V'c o 

Choosing ~ = -  I/2m 0 [that means, in (70), :t ~ =~p~/m o, i.e., ~- is propor- 
tional by a constant factor to the proper time measured in x] and forgetting 
an extra multiplicative factor (not depending on x', x", z', z") the integral in 
(91) is 

x('r")= x".z(r")= z" 

[ imo [ ( x " - - x ' )  2 ]} 
~ e x p l - - - - 2 - - ( r " - " r ' ) ' r " - - I - '  +I 

• exp - cotan - - ( z"2 + z'2 ) 
/?2 o 

_ ,2 , ~.~J} 
sin[K(~- 2 ,  )/too] (93) 

With other calculations, using (92), the complete Feynman propagator 
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is expressed as 

(x ' z " ] ( l , . ( .F)[x ' z ' )  = [Right-hand side of (93)] 

- i m ~  
x 

i,r,,- 

505 

X 
- i K  2 

41r 2 (sin K ( ' r " -  "r') ) sin K(~"-'-- "r') mo mo 

(94) 

where cp(-r', ~-") is an arbitrary phase factor, not determinable by (92) and of 
no physical meaning, which we can choose equal to 1. 

Now the real thing needed for an explicit scattering treatment of 
particles with covariant harmonic oscillator model, is the vertex function, 
and we will give here its expression, referring to the Appendix for details of 
calculations. 

Using the same conventions applied in describing Figure 1, the vertex 
function 

(p(o) I q)(i)~(2) ) I interacti~ 
a t  P 

(95) 

corresponds to a graph of three covariant harmonic oscillator systems, as 
shown in Figure 2, where we have distinguished each system into its two 
subcomponents. The states ]~u)) of external lines [i] ( i =  1,2) are to be 
physical states: if Pu) and n u ) ~  (n~o, n~'i), ni'i'~) are their quantum numbers 
(p2(i } = bRu~ + 2Ku)n(i )), those states will be called, as usual, ] ~p, , . . , ) .  

The ket [ O(0)) has to belong to a set able to span the Hilbertian space of 
virtual kets of the [0] system. We will choose, for [P(0)), a form indicated as 
[ p(o)n(0)), corresponding to a Kim and Noz state with quantum numbers 
p(0),n(o~, deprived of the mass shell condition p(Zo)=b~o)+2K(o)n(o r Our 
choice, since p~) > 0 has to be met, means we exclude, in the propagation, 
photon or tachyonlike virtual particles. And since we have 

^ 0 r176 
(~0))  [ (P(o,n(0))cm,.,) = 0  (96) 
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P 

[o] I~,o,> 

Fig. 2. Vertex of three oscillator systems. 

we exclude (z~)) cm,o' excited states too, which corresponds (Kalb and Van 
Alstine, 1976) to excluding the propagation of particles that, in shell, might 
be photon or tachyonlike. The second assumption may be considered forced 
by the physical meaning, while the first one clearly restricts us to study cases 
of scattering for which 

(p~,) + p(2)) 2 > 0 (97) 

Having established the above and going back to vertex (95) we have 

4C' 
< P~o>n<o>/%,,,.,,9. ....... > I,.,.~,,o~ - ~ - ~ 8 (  p,,, + Pr->- p<o>) 

at  P 

4 4 4 2 2 2 2 2 2 2 
_( ,,, ,, +_ ,,, 2_, + e, o, )_ + , , ,  ,,,,~ ,p,____o, ( ,,, ,_~, + , ,  ~___~, + , , , 0 ,  )_ 

2 2 2 2 2 2 2 2 - -  2 2 2 • 8 K [ ( p 2 o , + P , 2 _ P , i , ) ( p m _ p , 2 , + p , u ) ( _ p m , + p , 2 , + p , l , )  P, uP,2,P(o,] 

~ 2 2 [ 4 2 2 4 - -  2 2 4 l 

~ 2 2 2 Xexp 8K[( p,2o, + p{2, l p(~})( pCo) - p,~) + p,~,)(_ P~o, + P<%, + P,~,)-  P, uP(z,P(o~] 

• 
2 1 (}"'~' / 

oil 0 , , ,  - ' " i ~  ' " G ,  . . . .  G'~ (2,,, . , , , .o,!.,o,W~,!) '/~ as, o, as,  o, 0 s ,~  , ] 

- ,~v ~ • i~.(-  gx""  + g~'")J~u,.+ ~2~. - K X"" + g 2~,, 



Vertex Calculation 507 

[ (  ) ] +~0,.-I< x. '+ x . ' + z z . "  +g." 4o,,+~,).(-zKz"")4.,,. 

[(,--2)] 
+ 4,)~,[- 2K( X~" + Z~'")].~o,. + 4z,~ , - 2 K  X*" + Z ~'~ "~o)~ 

iKI/2 
+ P(1)u 2 

iKi/2 
+ P(t)~, 2 X~*" 2)~ + P(2)~* ZU" "I(2). 

[ iKt/2 I-2 )] 
- -  p . v  - + P(i)~ ~ X~ + Z J(o). 

+ P(2)~'[ iK'/2'2 ~ (  X~'"+ Z~'~)]'~~ J(o):o. 

o = 0 ,  . 2  

where 

(i) 
(ii) 

(iii) 

(iv) 

(v) 
(vi) 

(vii) 

(viii) 

(98) 

C' is a coupling constant. 
K is the elastic constant of the three systems, supposed to be the 
same for all of them (K(o) = K, o = 0, 1,2). 
the quantum conditions p~)=  b~) +2Kn(o:  n(i ) = (n~i) + n~' o + 
n~'i~ ), i =  1,2, are to be remembered. 
J(o) is a four-component object (J(o)~) = (0, J('o), J{"), J~"]): J ( ] )=  
__ ,2 l,,2 f,,,2 
_ ~ o )  - -  ~ ( o )  - -  ~ ( o )  �9 

( X "'), (Z" ' )  are two 4 • 4 matrices, functions of P(i), P(2), P(o) (see 
the Appendix for their explicit expressions). 

1~2 
(X~"), is the same matrix as above, with Po) and P(2) inter- 
changed. 
The expression 

,.'..) ,,,q~ ,,,,if.;) 
(99) 

refers to the n~o) state by a partial derivative of the n(o) order, 
! t I t  t t  v t !  performed n(o) times on J(o), n(o) times on J(.), and n(o) times on 

J(";. After all the derivatives are calculated the variables J(o) 
disappear in virtue of the J(o) = 0 conditions. 
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It is to be noticed that expression (98), very complicated indeed, is, on 
the other hand, able to generate vertex functions for interaction of whatever 
spin numbers we may consider for the three systems. In the next section I 
will examine the vertex of three scalars and a vertex of two scalars and a 
spin-1 boson. 

5. EXPLICIT FORMULATION OF THE VERTEX IN TWO 
PHYSICAL CASES, AND CONCLUSIONS 

If we use the generating formula (98) and take n(o) ---- (0, 0, 0), o = 0, 1,2, 
according to expressions (89) we get a vertex of three scalars. [(89) apply to 
off-shell states too, of the kind of [p(o)n(0)) involved here.] The explicit 
formulation of that vertex is 

qf(P(o); s(0)= 0; Po); so) = 0; P(2); S(2) =0) 
t 

- -  2~)23(P(1) +P(2) ( -P(~176 

where we define the new coupling constant 

(lOO) 

and where E is the product of the first two exponential factors in (98) 
(calculated, in this case, with p(2/) = b~), i = 1,2). 

In an analogous way, considering the three cases: n(l ) --(1,0,0), n(,)--= 
(0, 1,0), no) --= (0,0, 1), with n(0 ) = n(2 ) ~ (0,0,0), we get 

~f( P(o); S(o) = 0; PO); so) = 1 ; s3(~) = u; P ( 2 ) ;  S(2)  : 0) 

,~--,2 8(p(,) + P(2) - P(o))E( PO)' P(2), P(o))P(P(,), P(2), P(o)) 
tz~r) 

• u) (lO2) 

y , =  (21r)2 4C' (101) 
97rK 
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where 

p(], = b~) + 2K. 

r . (p .~ ,  ~) = 

P(PO), P(2), P(o)) = 

P~2) = b~2) 

1 l i 2 
- ~  X.( Po)I + - ~  X.( P,,)) 

1 l i 2 --~ X.( p(,))- ~ X.( p,,)) 

i f u = + l  

if u = 0  

i f u =  - 1 

509 

(103) 

(104) 

[( P~, + P(] , -  P~))( P ~ , -  P,], + P,~,) ( -  P(Zo)+ P~)+ P~z))- P,])P(~,P,o)] 

(lo5) 

Defining 

= - ~ '  u ) ,  u =  - 1 , o ,  + 1 ( l O 8 )  eu(Po)) ~ APo). 

[which meets the properties e,](pr and g~ae~( ~* P(o)e~. (P(o) = 
- 3 u . . ]  we have 

~(P(o); S(o) = 0; p~j); s~l ) = 1; s3(t) = u; P(z); s(2) = O) 

if2- 
- 2K~/z (~)2~(P(I)+P(z)-P(o)) 

• E(PO). P(2). P(o})P(P(l). P(2). P(o))(P(2) + P(o)).e~(PO)) 

(109) 

Observing that 

g""X~(p(,))p(,),.=O, k = 1 . 2 . 3  (106) 

we can write (using also the 3 funct ion  cond i t i on  P<o) = P(~) + P(2)) 

ga"p(2),,F~(p(i), u) -- I ""t --~g ~p~2),,+ p(o),,)F.(p(t),u) (10;/) 
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It is easy to interchange the roles of particles [1] and [2], since this only 
requires 

p0) ~ p(2), i ~ - i  (110) 

Now expressions (100) and (109) are similar to those of usual field 
theories, apart from the extra factors E in the first case and E.P in the 
second case. 

The E factor satisfies 

lim E = I  (111) 
K--+oo  

i.e., in the limit of rigid bodies, vertex (100) reduces exactly to the usual one. 
Furthermore, provided p~) > 0, p~) > 0, we have 

l im E(p(o,  P(2), PO) + P(21) = l im E(p(o,  P(2), P(o + P(2))_ = 0 

(112) 

and both limits go to zero like 

lim e x p ( - x 2 ) ,  x ~ R  (113) 
X ~ Q ~  

That means the E factor is a strong convergence factor for large timelike 
momenta. As for graphs of higher orders than the one shown in Figure 1, 
there is the possibility they need no renormalization. All the theory here 
developed is rather far from a physical description of real particles, but 
what is shown is attractive. In fact it seems there is the possibility of having 
finite theories, using composite models of particles. What is needed is a 
composite model that is more general and more physical than the harmonic 
oscillator one, and, if possible, which leads to fewer complications in the 
algebra. 

APPENDIX 

Remembering the generating formula for Hermite polynomials 

Hi(t)  = exp(--j2+2jt , I ~ N + { 0 } ,  t ~ C  (A.1) 
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the wave function ( x z l p n )  can be expressed in the following way: 

(xz] pn)  = 4 ~ 3 ( i n n , ! n , , ! n , , , ! ) l / 2  p2 

~ } J=0 
X 3J'" '~J' '"aJ .... '"exp[j2+ZK'/ZJ~'~'~(P)Z~] (A.2) 

where we have introduced a four-dimensional vector J whose covariant 
space components are J ' ,  J" ,  J '" ,  and whose square j2  is to be calculated in 
the pseudo-Euclidean way, and the covariant time component may be 
chosen arbitrarily (for instance zero, as indicated in Section 4). When we 
want to apply the vertex function expression (57) to the case of a vertex of 
three oscillator systems, we make use of (A.2) and so the first expression we 
get is 

(P(o)n(0)l~p . % n )]inter,c~on:C (I) (I) (21 (2) 

a l  P 

• ( ~ 

2 K 2 

K 3 

(4~r')' [H 2o =o(2"'~176 !n;', !n;'d, !),/2] 
(2) 

exp ~0 J(2o} 
Jtol = 0 ,  O 

o = 0 . 1 , 2  

P-~o, ( P(~176 )2 + 2 K l /2"~~176 

where 

X exp(ip(0)x(0 ) - ip(l)x (I) - i P(2)x(2)) d(  variablesof /] 
with  c o n n e c t i o n s  connection 
in P 

2 - -  2 Po) - b(i) +iKn( i} '  i = 1,2 

(A.3) 

and, for any problem of interpretation, we refer to the list of definitions in 
the last part of Section 4. 

Considering Figure 2 and calling ~(o)t and ff~,)2 the four-dimensional 
coordinates of the two subcomponents of the oscillator system [o], o = 0, 1,2, 
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the connections in P can be written in the following way: 

-~(l)l  = "~(0)1 "= Y' 

)~(I )2  = 3~{2)1 = y , t  (A.4)  

"~(2)2 = "Y(0}2 = Y'" 

that is, using variables x(o), z(o) [remember x(o)=�89 +-~(o)2); z(~ 

g~o)2 -- -~(o)l ] 

_ y ' +  y"' 
x(~ 2 ' z(~ = Y ' " -  y '  

_ y ' +  y" 
x(b 2 ' z(t) = Y"-- y '  

_ y " +  y,,, 
x(2) 2 ' z(2) = Y " ' -  y ' '  

(A.5) 

Introducing the above connections in formula (A.3), then changing the 
variables of integration y' ,  y" ,  y ' "  to the new ones 

y '  + y ' "  
X - -  - -  

2 

y, = y " - -  y' (A.6)  

Y2 = Y . . . .  Y" 

including the Jacobian of this transformation in the coupling constant 
(which we will now call C'), and performing a first integration in dx, we get 

K 3 ( 2 , t r )  4 

I% ,,,% . ~ = c '  P(o)n{ o) , ,  {n {21 {z) / l interaction 
a t P  (4rr3)31"I]=o(2"'"nio)!ni'o,!n~",!) '/z 

= aJ'n{o~aj"n~%oJ ..... {'L 

(2) 
=0, exp • ,I(2o) 8(Po) + P(2)- P(o )) 

J ( ~  o = 0 
o = 0 , 1 , 2  

• f e• K/, + Ky~ + Ky,y~ + (24,/r + 2~o/r i -- ~fl(2) ) Yl 

i K + 
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K 2 )2 p ~  ( P(2)Y2 ) K -Z(p,o,y, 

P(~) (p(0)Y2)2 __ 2__~_( P<0)Y,)(P(0)Y2) dy, dy2 
P(o) 

where 

p~,) = b~i ~ + 2Kn(i ), i -- 1,2 

We define now the following eight-dimensional formalism: 

V = ( V / ) - -  (2"~')~'K'/2 +2"~~189 

(2~2, ,K ' /2  + 2.~o,.K'/2 + �89 

e) 
a=(A,o)= l e  15 ~ 

where 

e : ( G )  G K K 
= ~ g~.. - p-~o P(o)~. P(o)~ 

K K 
- _-5- P(o)~, P(o)~ A , = ( A t ~ ) : A , ~ . ~ = K g . ~  -~3po)~.po)~ P~o) 

(A.7) 

(A.8) 

K K 
A 2 = (A2~,.) �9 A2~,. = K&,~ - _-ZS-'P~2)~,P~2~. ~ P~o~,P(o~ 

P~2~ P~o) 

and so the integral to be calculated in (A.7) is reduced to the form 

f e x p ( A , S Y ' + V , Y ' ) d Y  ( t , m = l - - - 8 )  (A.9) 

Using also the 3 condition (that is remembering, when useful, Pco)= P~l) + 
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P(2)) we can find 

where 

4 

A 
TI  R /  

p./J 
N = ( R " " ) :  R " v =  X [plll-p,2, 

Remembering (Coleman, 1975) 

,n. 4 

f e x p ( A l . , Y t Y ' + V i Y t ) d Y = ( d e t A ) t / 2 e x p [ - l ( A - ' ) l m v i v . , ]  

Rasp in i  

(A.10) 

X =  (X~'") �9 X ~" = ~---~g~'" + xOg~'"g"ap~i),,pu)~ 

- -  _ _  2 2 2 

"~ 2 2 2 2 x, 2 x 2 , _  4 [(p~o}+P(2_po))(2p,2)_2p~o)+p~,)_p, ,)p,2) ] 3KA 

X 2 2  4 2 2 2 
- 3Ka [P~'~(Pc~ +p~2~)-2p~] (A.11) 

2 2 2 2 2 9 A=(p(o)+P(2)--p~))(p~o)--p(2)+p(l))(_p(o)+p(z)+p~t) ) _ 2 2 -2  P( i ) P(2) P(o) 

2 
Z = (Z~'") �9 Z ~' ' -  3i~g ~'" + zOg~'"g"Bpo),,p~j)B 

ZI I __ 4 -~ 3KA[P~L( 2 2 2 2 2 Pto~ + P(2)-  P~ , ) ) -  P~,)P~2)] (A.12) 

z l  2 2.21 _ 4 2 2 2 2 = 3Ka [(P~o) + Pa~- P,,~)(P~o)- P~ + p2)_ P~,)P~2~] 

2 22 4 
- 3KA [Pg)( P~ ' - -  P~) + P~ ' ) - -  p2p2}] 

T =  (V'~"): T"" = Z ' "  (A.13) 

(A.14) 

the vertex is, at last, calculated as in (98). 

(A.15) 
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